SOLUTION: The question is: If sin(2x)-cos(2x)=sqrt(2)sin(2x+xpi), then the number 0 < A < 2. What does A equal? I can't quite find the right trig identities to get the answer. This is wh

Algebra ->  Test -> SOLUTION: The question is: If sin(2x)-cos(2x)=sqrt(2)sin(2x+xpi), then the number 0 < A < 2. What does A equal? I can't quite find the right trig identities to get the answer. This is wh      Log On


   



Question 354820: The question is: If sin(2x)-cos(2x)=sqrt(2)sin(2x+xpi), then the number 0 < A < 2. What does A equal?
I can't quite find the right trig identities to get the answer.
This is what I've done so far, any help or pointers is much appreciated!
I've started with the left side to attempt to make it look like the right side which will in the end, give me what A equals.
2sin(x)cos(x) - cos^2 - sin^2(x)
2sin(x)cos(x) -(1-sin^2(x)) - sin^2(x)
2sin(x)cos(x) - 1 + sin^2(x) - sin^2(x)
2sin(x)cos(x) -1
This is where I'm stuck and have tried other trig identities but never wind up with the right answer.

Answer by agentc0re(3) About Me  (Show Source):