SOLUTION: using mathematical induction to prove 8+10+12+...+(2n+6) = n^2 +7n , the Pk + 1 statement is 8+10+12+...+(2n+6) = (k+1)+7(k+1)

Algebra ->  Probability-and-statistics -> SOLUTION: using mathematical induction to prove 8+10+12+...+(2n+6) = n^2 +7n , the Pk + 1 statement is 8+10+12+...+(2n+6) = (k+1)+7(k+1)      Log On


   



Question 353951: using mathematical induction to prove 8+10+12+...+(2n+6) = n^2 +7n , the Pk + 1 statement is 8+10+12+...+(2n+6) = (k+1)+7(k+1)
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
using mathematical induction to prove
8+10+12+...+(2n+6) = n^2 +7n ,
------
Check for n=1
8 = 1^2+7*1
8 = 8
-------------------
Assume the formula is true for n = k
8+10+12+...+(2k+6) = k^2+7k
----------------
Prove the formula is true for n = k+1
[8+10+12+...+(2k+6)]+(2(k+1)+6) = [k^2+7k] + (2(k+1)+6
= k^2+7k+2k+8
= k^2+2k+1+7k+7
= (k+1)^2+7(k+1)
---
Therefore the formula is true for all positive whole numbers.
======================
Cheers,
Stan H.
============