SOLUTION: The minimum value of z= 5x + 15y, subject to 4x + 3y >(or equal to)72 6x + 10y <(or equal to)174 x >(or equal to) 0 y >(or equal to) 0 occurs at a. (0,17.4) b. (9,12) c.

Algebra ->  Test -> SOLUTION: The minimum value of z= 5x + 15y, subject to 4x + 3y >(or equal to)72 6x + 10y <(or equal to)174 x >(or equal to) 0 y >(or equal to) 0 occurs at a. (0,17.4) b. (9,12) c.       Log On


   



Question 353053: The minimum value of z= 5x + 15y, subject to
4x + 3y >(or equal to)72
6x + 10y <(or equal to)174
x >(or equal to) 0
y >(or equal to) 0
occurs at
a. (0,17.4)
b. (9,12)
c. (18,0)
d. (29,0)

Answer by Fombitz(32388) About Me  (Show Source):
You can put this solution on YOUR website!
graph%28300%2C300%2C-5%2C20%2C-5%2C20%2C%2872-4x%29%2F3%2C%28174-6x%29%2F10%29
.
.
.
a,b,and c are all valid vertex points.
d is not.
Check the value of z(x,y) at all 3 locations to find the minimum value.
(18,0):z=5x%2B15y=5%2818%29%2B0=90
(0,17.4):z=5x%2B15y=5%280%29%2B15%2817.4%29=261
(9,12):z=5x%2B15y=5%289%29%2B15%2812%29=225