SOLUTION: Use implicit differentiation to find dy/dx: e^y lnx+ xy3= y^2

Algebra ->  Exponential-and-logarithmic-functions -> SOLUTION: Use implicit differentiation to find dy/dx: e^y lnx+ xy3= y^2      Log On


   



Question 33754: Use implicit differentiation to find dy/dx:
e^y lnx+ xy3= y^2

Answer by venugopalramana(3286) About Me  (Show Source):
You can put this solution on YOUR website!
e^y lnx+ xy3= y^2...DIFFERENTIATING WRT X
(E^Y)(DY/DX)(LN(X))+(1/X)(E^Y)+Y^3+X(3Y^2)(DY/DX)=2Y(DY/DX)
(DY/DX){(E^Y)(LN(X))+X(3Y^2)-2Y}=-{(1/X)(E^Y)+Y^3}
DY/DX=-{(1/X)(E^Y)+Y^3}/{(E^Y)(LN(X))+X(3Y^2)-2Y}