(2u^3-13u^2-8u+7) divided by (u-7)
Start with this:            
     ____________________ 
u - 7)2u³ - 13u² - 8u + 7
u on the far left divided into 2u³ gives 2u², so put 2u² on top of the line
 
             2u²        ` 
u - 7)2u³ - 13u² - 8u + 7
 
Multiply the 2u² by the u, getting 2u³, write that down under the
other 2u²:
   
             2u²        `
u - 7)2u³ - 13u² - 8u + 7
      2u³ 
Multiply the 2u² by the -7, getting -14u², write that down under the
-13u²:
             2u²        `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
Draw a line at the bottom:
             2u²        `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
Now we subtract, by thinking of changing the sign of
the 2u³ to -2u³ and adding, and so it cancels out.
We also subtract the other terms, by thinking of changing 
the sign of the -14u² to +14u² and adding, and we get +1u² 
or just u². We write that below the line:
             2u²        `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² 
Now we bring down the -8u:
             2u²        `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
u on the far left divided into u² at the bottom, gives + u,
so put + u on top of the top line
             2u² +  u   `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
Multiply the u on top by the u at the far left, getting u², 
write that down under the other u²:
             2u² +  u   `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u²
Multiply the u on top by the - 7, getting -7u, write that 
down under the 8u:
             2u² +  u   `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
Draw a line at the bottom:
             2u² +  u   `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
Now we subtract, by thinking of changing the sign of
the lower u² to -u³ and adding, and so it cancels out.
We also subtract the other terms, by thinking of changing 
the sign of the - 8u to +8u and adding, and we get -u.
We write that below the line:
             2u² +  u   `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u 
Now we bring down the + 7
             2u² +  u   `
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u + 7
u on the far left divided into -u at the bottom, gives - 1,
so put - 1 on top of the top line
             2u² +  u - 1
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u + 7
                   
Multiply the - 1 on top by the u at the far left, getting -u,
write that down under the other -u:
             2u² +  u - 1
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u + 7
                   -u 
Multiply the - 1 on top by the - 7, getting + 7, write that 
down under the other + 7
             2u² +  u - 1
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u + 7
                   -u + 7
Draw a line underneath:
             2u² +  u - 1
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u + 7
                   -u + 7
Now we subtract, by thinking of changing the sign of
the lower -u to +u and adding, and so it cancels out.
We also subtract the other terms, by thinking of changing 
the sign of the + 7 to - 7 and adding, and we get 0.
We write that below the line:
             2u² +  u - 1
u - 7)2u³ - 13u² - 8u + 7
      2u³ - 14u²
              u² - 8u
              u² - 7u
                   -u + 7
                   -u + 7
                        0
The remainder is 0.  So we are done and the quotient is
u² + u - 1
When the remainder isn't 0 we have to add a fraction 
expression to the quotient whose numerator is the remainder and whose
denominator is the divisor.
Edwin