SOLUTION: Verify the identity (sinx + cosx)^2=1 + sin2x

Algebra ->  Trigonometry-basics -> SOLUTION: Verify the identity (sinx + cosx)^2=1 + sin2x      Log On


   



Question 333085: Verify the identity (sinx + cosx)^2=1 + sin2x
Answer by jrfrunner(365) About Me  (Show Source):
You can put this solution on YOUR website!
Verify the identity %28sinx+%2B+cosx%29%5E2=1+%2B+sin2x
--
1. Expand the left hand side of the equation
+%28sinx+%2B+cosx%29%5E2=sin%5E2%28x%29%2B2%2Asin%28x%29%2Acos%28x%29%2Bcos%5E2%28x%29
2. simplify this result

--
now you need to utilize the property of Sin(a+b)=sin(a)*cos(b)+sin(b)*cos(a)
--
Sin(2x)=sin(x+x)=sin(x)cos(x)+sin(x)*cos(x) = 2*sin(x)*cos(x)
--
therefore
%28sinx+%2B+cosx%29%5E2=1%2B2%2Asin%28x%29%2Acos%28x%29=1%2Bsin%282%2Ax%29