Start with this:
`
3x - 1)3x² - 7x + 1
Divide get x.
Write it above the -7x
x `
3x - 1)3x² - 7x + 1
Multiply the x by the 3x, getting 3x².
Write that under the 3x²:
x `
3x - 1)3x² - 7x + 1
3x²
Multiply the x by the -1, getting -x.
Write that under the -7x:
x `
3x - 1)3x² - 7x + 1
3x² - x
Draw a line:
x `
3x - 1)3x² - 7x + 1
3x² - x
Subtract (3x² - 7x) - (3x² - x)
3x² - 7x - 3x² + x
-6x
Write that under the line under -x
x `
3x - 1)3x² - 7x + 1
3x² - x
- 6x
Bring down the +1
x `
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
Divide get -2.
Write that above the +1
x - 2
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
Multiply the -2 by the 3x, getting -6x.
Write that under the -6x:
x - 2
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
-6x
Multiply the -2 by the -1, getting +2.
Write that under the +1:
x - 2
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
-6x + 2
Draw a line:
x - 2
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
-6x + 2
Subtract (-6x + 1) - (-6x + 2)
-6x + 1 + 6x - 2
-1
Write that under the line under +2
x - 2
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
-6x + 2
-1
We have now finished the division. Now
we make a fraction by placing the remainder
over the divisor getting
Now we add that to the quotient:
x - 2 +
3x - 1)3x² - 7x + 1
3x² - x
- 6x + 1
-6x + 2
-1
So the answer is at the top:
Or you can write it a tiny bit simpler as
Study those steps carefully.
Edwin