| 
 
 
| Question 325582:   PROVE THAT sinA/1+cosA + 1+cosA/sinA=2cosecA
 Answer by AAfter Search(61)
      (Show Source): 
You can put this solution on YOUR website! To prove, sinA/1+cosA + 1+cosA/sinA=2cosecA L.H.S. = sinA/1+cosA + 1+cosA/sinA
 = [sin^2A + (1 + cosA)^2]/sinA(1 + cosA)
 = (sin^2A + 1 + cos^2A + 2cosA)/sinA(1 + cosA)
 = (1 + 1 + 2cosA)/sinA(1 + cosA) [since,sin^2A + cos^2A = 1]
 = (2 + 2cosA)/sinA(1 + cosA)
 = 2(1 + cosA)/sinA(1 + cosA) = 2/sinA
 = 2 cosecA [since 1/sinA = cosecA]
 = R.H.S.
 Hence, Proved
 | 
  
 | 
 |