SOLUTION: Prove the following identity: cos 4x = cos^4x - 6cos^2xsin^2s + sin^4x
Algebra
->
Trigonometry-basics
-> SOLUTION: Prove the following identity: cos 4x = cos^4x - 6cos^2xsin^2s + sin^4x
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 32481
:
Prove the following identity:
cos 4x = cos^4x - 6cos^2xsin^2s + sin^4x
Answer by
venugopalramana(3286)
(
Show Source
):
You can
put this solution on YOUR website!
COS(4X)=COS(2(2X))=COS^2(2X)-SIN^2(2X)
={COS^2(X)-SIN^2(X)}^2-{2SIN(X)COS(X)}^2
=COS^4(X)+SIN^4(X)-2COS^2(X)SIN^2(X)-4SIN^2(X)COS^2(X)
=COS^4(X)-6COS^2(X)SIN^2(X)+SIN^4(X)