| 
 
 
 
Question 31634:  This is an extra credit question that we (my class) have not fully covered. I have no idea where to start and dont understand the question in general. Can you help
 
Which equation describes an ellipse? 
(A) -3x^2-7x-3y^2-9=0 
(B) 2x^2-7x+4y^2-9y=-13 
(C) 5y^2-7y-12x^2-3x+2=0 
(D) 2y^2-7x-9y=-1
 
Thanks again for your help. I really need these extra points. 
 Answer by venugopalramana(3286)      (Show Source): 
You can  put this solution on YOUR website! SEE THE FOLLOWING AND TRY.IF STILL IN DIFFICULTY PLEASE COME BACK. 
--------------------------------------------------------------- 
Linear_Algebra/30362: Question: Find the equation of the ellipse whose center is (5,-3) that has a vertex at 13,-3) and a minor axis of lenght 10.						 
POssible Answers:						 
(A) (x-5)^2/64 + (y+3)^2/25 = 1						 
(B) (x+5)^2/64 + (y-3)^2/25 = 1						 
(C) x^2/64 + y^2/25 = 1						 
(D) none of these						 
1 solutions						 
Answer 17014 by venugopalramana(1167) About Me  on 2006-03-15 11:21:03 (Show Source):						 
SEE THE FOLLOWING AND TRY..IF STILL IN DIFFICULTY PLEASE COME BACK...						 
OK I WORKED IT OUT FOR YOU NOW						 
I TOLD YOU EQN IS						 
(X-H)^2/A^2 + (Y-K)^2/B^2....						 
WHERE H,K IS CENTRE...SO H=5 AND K=-3 AS CENTRE IS GIVEN AS (5,-3)....NOW VERTEX IS (13,-3)...IT LIES ON ELLIPSE..SO IT SATISFIES THE EQN						 
(13-5)^2/A^2 +(-3+3)^2/B^2 =1						 
HENCE A^2=64...OR A=8						 
MINOR AXIS =10=2B...HENCE B=5..SO EQN.S						 
(X-H)^2/64 + (Y+3)^2/25 =1						 
THAT IS A IS CORRECT.						 
						 
Can you help me write an equation for an ellipse with a major axis with endpoints of (0,8), and (0,-8) with foci of (0,5) and (0,-5)?						 
1 solutions						 
--------------------------------------------------------------------------------						 
Answer 16810 by venugopalramana(1120) on 2006-03-13 11:19:12 (Show Source):						 
Can you help me write an equation for an ellipse with a major axis with endpoints of (0,8), and (0,-8) with foci of (0,5) and (0,-5)?						 
THIS SHOWS THAT X AXIS IS THE MAJOR AXIS						 
STANDARD EQN.OF ELLIPSE IS						 
(X-H)^2/A^2 +(Y-K)^2/B^2=1						 
CENTRE IS (H,K)..AS PER THE PROBLEM H=K=0 AS CENTRE OF ELLIPSE IS AT (0,0)..SINCE major axis with endpoints ARE (0,8), and (0,-8)						 
WHERE MAJOR AXIS =2A=8+8=16...SO A=8..SINCE major axis with endpoints ARE (0,8), and (0,-8)						 
FOCI ARE GIVEN BY						 
AE,0 AND -AE,0...SO AE =5...SO E=5/A=5/8						 
BUT E=SQRT{(A^2-B^2)/A^2}=5/8...SQUARING						 
25/64=(A^2-B^2)/A^2=1-B^2/A^2						 
B^2/64=1-25/64=49/64						 
B^2=49						 
B=7						 
HENCE EQN. OF ELLIPSE IS						 
X^2/64 + Y^2/49 = 1						 
						 
Quadratic-relations-and-conic-sections/30009: Can you help me write an equation for an ellipse with a major axis with endpoints of (0,8), and (0,-8) with foci of (0,5) and (0,-5)?						 
						 
1 solutions						 
Answer 16810 by venugopalramana(1167) About Me  on 2006-03-13 11:19:12 (Show Source):						 
Can you help me write an equation for an ellipse with a major axis with endpoints of (0,8), and (0,-8) with foci of (0,5) and (0,-5)?						 
THIS SHOWS THAT X AXIS IS THE MAJOR AXIS						 
STANDARD EQN.OF ELLIPSE IS						 
(X-H)^2/A^2 +(Y-K)^2/B^2=1						 
CENTRE IS (H,K)..AS PER THE PROBLEM H=K=0 AS CENTRE OF ELLIPSE IS AT (0,0)..SINCE major axis with endpoints ARE (0,8), and (0,-8)						 
WHERE MAJOR AXIS =2A=8+8=16...SO A=8..SINCE major axis with endpoints ARE (0,8), and (0,-8)						 
FOCI ARE GIVEN BY						 
AE,0 AND -AE,0...SO AE =5...SO E=5/A=5/8						 
BUT E=SQRT{(A^2-B^2)/A^2}=5/8...SQUARING						 
25/64=(A^2-B^2)/A^2=1-B^2/A^2						 
B^2/64=1-25/64=49/64						 
B^2=49						 
B=7						 
HENCE EQN. OF ELLIPSE IS						 
X^2/64 + Y^2/49 = 1 
  | 
 
  
 
 |   
 
 |   
 |  |