How do I write the solution set of {x| } for 
Find all the critical values by setting each of the factors on the
left = 0
x + 20 = 0 gives critical value x = -20
x - 10 = 0 gives critical value x = 10
x + 11 = 0 gives critical value x = -11
Mark them on a number line:
----------o-----------------------------------o-----------------------------------------------------------------------------------o---------
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value left of -20, the left-most critical value,
say x = -21.  Test it by substituting in the inequality:
 
 
 
 That is false so we DO NOT shade the part of the number line
left of -20.  So we still have the unshaded number line
----------o-----------------------------------o-----------------------------------------------------------------------------------o---------
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value between -20 and -11, say x = -12.  Test it by substituting in the inequality:
That is false so we DO NOT shade the part of the number line
left of -20.  So we still have the unshaded number line
----------o-----------------------------------o-----------------------------------------------------------------------------------o---------
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value between -20 and -11, say x = -12.  Test it by substituting in the inequality:
 
 
 
 That is true so we DO shade the part of the number line between -20 and
-11.  So we have:
----------o===================================o-----------------------------------------------------------------------------------o--------->
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value between -11 and 10, say x = 0.  Test it by substituting in the inequality:
That is true so we DO shade the part of the number line between -20 and
-11.  So we have:
----------o===================================o-----------------------------------------------------------------------------------o--------->
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value between -11 and 10, say x = 0.  Test it by substituting in the inequality:
 
 
 
 That is false so we DO NOT shade the part of the number line between -20 and
-11.  So we still have:
----------o===================================o-----------------------------------------------------------------------------------o--------->
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value right of 10, the right-most critical value,
say x = 11.  Test it by substituting in the inequality:
That is false so we DO NOT shade the part of the number line between -20 and
-11.  So we still have:
----------o===================================o-----------------------------------------------------------------------------------o--------->
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
Choose a value right of 10, the right-most critical value,
say x = 11.  Test it by substituting in the inequality:
 
 
 
 That is true so we DO shade the part of the number line to the right of
10.  So we have:
----------o===================================o-----------------------------------------------------------------------------------o=========>
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
In set-builder notation the solution set is written:
{x | -20 < x < -11 OR x > 10}
In interval notation the solution set is written:
(-20,-11) U (10,
That is true so we DO shade the part of the number line to the right of
10.  So we have:
----------o===================================o-----------------------------------------------------------------------------------o=========>
-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6   7   8   9  10 11 12 13
In set-builder notation the solution set is written:
{x | -20 < x < -11 OR x > 10}
In interval notation the solution set is written:
(-20,-11) U (10, )
)
Edwin