SOLUTION: Find (1/sqrt2 + i/sqrt2)^8 -8 256 8 1 None
Algebra
->
Trigonometry-basics
-> SOLUTION: Find (1/sqrt2 + i/sqrt2)^8 -8 256 8 1 None
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 304856
:
Find (1/sqrt2 + i/sqrt2)^8
-8
256
8
1
None
Answer by
stanbon(75887)
(
Show Source
):
You can
put this solution on YOUR website!
Find (1/sqrt(2) + i/sqrt(2))^8
---
= [(1+i)/sqrt(2)]^8
-----
= (1/16)[8C8(1)^8(i)^0 + 8C7(i^1) + 8C6(i^2) + 8C5(i^3) + 8C4(i^4) + 8C3(i^5)
+ 8C2(i^6) + 8C1(i^7) + 8C0(i^8)]
-----
= (1/16)[1 + 8i - 28 - 56i + 70 + 56i - 28 -8i + 1]
---
(1/16)(2 - 56 + 70]
(1/16)(16)
= 1
-------------------------
Cheers,
Stan H.
-------------------------
-8
256
8
1
None