SOLUTION: Problem: The difference between two positive integers is 36. One integer is three times as great as the other. Find the integer. So far, I made an equation of x+2=36+3(x). The

Algebra ->  Coordinate Systems and Linear Equations  -> Linear Equations and Systems Word Problems -> SOLUTION: Problem: The difference between two positive integers is 36. One integer is three times as great as the other. Find the integer. So far, I made an equation of x+2=36+3(x). The      Log On


   



Question 292559: Problem: The difference between two positive integers is 36. One integer is three times as great as the other. Find the integer.
So far, I made an equation of x+2=36+3(x).
The problem is that when I check my work 19=87, so my equation can't be right.
I need some help with turning this problem into an equation!

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
The statement "The difference between two positive integers is 36" means that x-y=36. Also, "One integer is three times as great as the other" translates to x=3y (note: 'x' is the larger number). Plug this into x-y=36 to get 3y-y=36. Now solve for 'y' to get y=18 and then use this 'y' value to find the corresponding 'x' value of x=54.