| 
 
 
| Question 286109:  The owner of a tea shop wants to mix three kinds of tea to make 100oz of a mixture that will sell for $0.83 per oz.  He uses Orange Pekoe, which sells for $0.80 per oz, Irish Breakfast, for $0.85 per oz, and Earl Grey which sells for $0.95 per oz.  If he wants to use twice as much Orang Pekoe as Irish Breakfast, how much of each kind of tea should be used?
 Answer by ankor@dixie-net.com(22740)
      (Show Source): 
You can put this solution on YOUR website! The owner of a tea shop wants to mix three kinds of tea to make 100oz of a mixture that will sell for $0.83 per oz.
 He uses Orange Pekoe, which sells for $0.80 per oz, Irish Breakfast, for $0.85
 per oz, and Earl Grey which sells for $0.95 per oz.
 If he wants to use twice as much Orange Pekoe as Irish Breakfast, how much of
 each kind of tea should be used?
 :
 Let x = amt of Irish breakfast tea required
 It says,"use twice as much Orange Pekoe as Irish Breakfast", therefore:
 2x = amt of Orange Pekoe Tea
 :
 Let y = amt of Earl Grey
 :
 Amt of tea equation
 x + 2x + y = 100 oz
 3x + y = 100
 y = (100-3x)
 :
 Cost of tea equation
 .85x + .80(2x) + .95y = .83(100)
 .85x + 1.60x + .95y = 83
 2.45x + .95y = 83
 :
 Replace y with (100-3x)
 2.45x + .95(100-3x) = 83
 2.45x + 95 - 2.85x = 83
 2.45x - 2.85x = 83 - 95
 -.40x = -12
 x =
  x = 30 oz of Irish Tea required
 then
 2(30) = 60 oz of Orange Pekoe
 and
 y = 100 - 90
 y = 10 oz of Earl Grey
 :
 :
 Check solution in cost equation
 .85(30) + .80(60) + .95(10) = .83(100)
 25.5 + 48.0 + 9.5 = 83
 
 | 
  
 | 
 |