SOLUTION: Simplify: (sqrt(50) - 2sqrt(5))(5sqrt(2) + sqrt(20))
Algebra
->
Square-cubic-other-roots
-> SOLUTION: Simplify: (sqrt(50) - 2sqrt(5))(5sqrt(2) + sqrt(20))
Log On
Algebra: Square root, cubic root, N-th root
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Square-cubic-other-roots
Question 262842
:
Simplify:
(sqrt(50) - 2sqrt(5))(5sqrt(2) + sqrt(20))
Answer by
dabanfield(803)
(
Show Source
):
You can
put this solution on YOUR website!
Expand by multiplying out the terms:
(sqrt(50) - 2sqrt(5))(5sqrt(2) + sqrt(20)) =
sqrt(50)*5*sqrt(2) + sqrt(50)*sqrt(20) - 2*sqrt(5)*5*sqrt(2) - 2*sqrt(5)*sqrt(20) =
5*sqrt(50*2) + sqrt(50*20) - 10*sqrt(5*2) - 2*sqrt(5*20) [Remember sqrt(a)*sqrt(b) = sqrt(a*b)]
The above is then equal to:
5*sqrt(100) + sqrt(1000) - 10*sqrt(10) - 2*sqrt(100) =
5*10 + sqrt(100*10) - 10*sqrt(10) - 2*10 =
50 + sqrt(100)*sqrt(10) - 10*sqrt(10) - 20 =
50 + 10*sqrt(10) - 10 sqrt(10) - 20 = 30