|  | 
| 
 
 
| Question 259713:  Given the ellipse: 2x^2 + 6y^2 + 32x - 48y + 212 = 0 find.
 a. The Center C
 b. Length of Major Axis
 c. Length of Minor Axis
 d. Distance from C to foci
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! Given the ellipse: 2x^2 + 6y^2 + 32x - 48y + 212 = 0 Complete the square on the x-terms and on the y-terms:
 2(x^2+16x+?) + 6(y^2-8y+?) = -212+?
 2(x^2+16x+64) + 6(y^2-8y+16) = -212+2*64+6*16
 2(x+8)^2 + 6(y-4) = 12
 Divide thru by 12 to get:
 (x+8)^2/6 + (y-4)^2/2 = 1
 ------
 h = -8 ; k = 4
 a = sqrt(6) ; b = sqrt(2)
 ------------------------
 find.
 a. The Center C ..........(h,k)
 b. Length of Major Axis...2a
 c. Length of Minor Axis,,,2b
 d. Distance from C to foci:
 a^2 + b^2 = distance^2
 d = sqrt(6 + 2)
 d = 2sqrt(2)
 ========================================
 Cheers,
 Stan H.
 ------------------------------
 | 
  
 | 
 |  |  |