SOLUTION: If ac + bd = 19 and ad −bc = 94 , determine the value of (a^2 + b^2 )( c^2 + d^2 ).
Algebra
->
Polynomials-and-rational-expressions
-> SOLUTION: If ac + bd = 19 and ad −bc = 94 , determine the value of (a^2 + b^2 )( c^2 + d^2 ).
Log On
Algebra: Polynomials, rational expressions and equations
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Polynomials-and-rational-expressions
Question 252311
:
If ac + bd = 19 and ad −bc = 94 ,
determine the value of (a^2 + b^2 )( c^2 + d^2 ).
Answer by
palanisamy(496)
(
Show Source
):
You can
put this solution on YOUR website!
Given, ac + bd = 19 and ad −bc = 94
Therefore, (ac+bd)^2+(ad-bc)^2 = (19)^2+(94)^2
a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd = 361+8836
(a^2+b^2)(c^2+d^2) = 9197