SOLUTION: find all values of x where the graph y=(2x^3 -3x+4) / (x^2) crosses its oblique asymptote

Algebra ->  Rational-functions -> SOLUTION: find all values of x where the graph y=(2x^3 -3x+4) / (x^2) crosses its oblique asymptote      Log On


   



Question 252096: find all values of x where the graph y=(2x^3 -3x+4) / (x^2) crosses its oblique asymptote
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
find all values of x where the graph y=(2x^3 -3x+4) / (x^2) crosses its oblique asymptote
--------------------
Divide y = 2x^3 - 3x + 4 by x^2 to get:
Quotient: 2x
Remainder: (-3x+4)/x^2
----
Oblique asymptote: y = 2x
------------------------
Find points of intersection:
2x^3-3x+4 = 2x
2x^3-5x+4 = 0
I graphed it and found one Real solution: x = -1.886796...
============================================================
Cheers,
Stan H.