SOLUTION: Solve using the elimination method. 2 x - y = 6 5x + y = 22
Algebra
->
Systems-of-equations
-> SOLUTION: Solve using the elimination method. 2 x - y = 6 5x + y = 22
Log On
Algebra: Systems of equations that are not linear
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Systems-of-equations
Question 243721
:
Solve using the elimination method.
2 x - y = 6
5x + y = 22
Found 2 solutions by
jim_thompson5910, checkley77
:
Answer by
jim_thompson5910(35256)
(
Show Source
):
You can
put this solution on YOUR website!
Start with the given system of equations:
Add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:
Group like terms.
Combine like terms.
Simplify.
Divide both sides by
to isolate
.
Reduce.
------------------------------------------------------------------
Now go back to the first equation.
Plug in
.
Multiply.
Subtract
from both sides.
Combine like terms on the right side.
Divide both sides by
to isolate
.
Reduce.
So the solutions are
and
.
Which form the ordered pair
.
This means that the system is consistent and independent.
Notice when we graph the equations, we see that they intersect at
. So this visually verifies our answer.
Graph of
(red) and
(green)
Answer by
checkley77(12844)
(
Show Source
):
You can
put this solution on YOUR website!
2 x - y = 6
5x + y = 22 add.
---------------------
7x=28
x=28/7
x=4 ans.
2*4-y=6
8-y=6
-y=6-8
-y=-2
y=2 ans.
Proof:
5*4+2=22
20+2=22
22=22