divide the polynomials using long divisin. What is Q(x) and r(x)?
by
(elevenx+twentyx to the second power+ twelvex to the third power + two) divided by (threex+2)
First write the polynomial in descending order of powers of x
12x³ + 20x² + 11x + 2
Then write
_______________________
3x + 2) 12x³ + 20x² + 11x + 2
Divide the first term 12x³ by 3x:
and write 4x² above the 20x²:
4x²__________
3x + 2) 12x³ + 20x² + 11x + 2
Multiply the 4x² by the (3x + 2) getting
and
write it under the first two terms and draw a line underneath:
4x²__________
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
Subtract
,
and write 12x² under the line under 8x², like this:
4x²__________
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x²
Now bring down the next term + llx and write in next to the 12x²
4x²__________
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
Divide the first term on the bottom 12x² by 3x:
and write + 4x above the 11x at the top, like this:
4x² + 4x____
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
Multiply the 4x by the (3x + 2) getting
and
write it under the first two terms and draw a line underneath:
4x² + 4x____
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
12x² + 8x
Subtract
,
and write 3x under the line under 8x, like this:
4x² + 4x____
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
12x² + 8x
3x
Now bring down the last term + 2 and write in next to the 3x
4x² + 4x____
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
12x² + 8x
3x + 2
Divide the first term on the bottom 3x by the 3x at the left:
and write + 1 above the + 2 at the top,
like this:
4x² + 4x + 1
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
12x² + 8x
3x + 2
Multiply the + 1 by the (3x + 2) getting
and
write it under the two terms at the bottom and draw a line
underneath:
4x² + 4x + 1
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
12x² + 8x
3x + 2
3x + 2
Subtract
,
and write 0 under the line under 2, like this:
4x² + 4x + 1
3x + 2) 12x³ + 20x² + 11x + 2
12x³ + 8x²
12x² + 11x
12x² + 8x
3x + 2
3x + 2
0
Now you are done and the answer is
and
since the remainder is 0 you do not have to put it over
the divisor
and add it on like you do when
the remainder is not 0.
Edwin