SOLUTION: How many numbers from 1 to 100 (inclusive) can be written as the sum of 2+ consecutive positive integers?
Algebra
->
Problems-with-consecutive-odd-even-integers
-> SOLUTION: How many numbers from 1 to 100 (inclusive) can be written as the sum of 2+ consecutive positive integers?
Log On
Word Problems: Problems with consecutive odd even integers
Word
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Problems-with-consecutive-odd-even-integers
Question 229040
:
How many numbers from 1 to 100 (inclusive) can be written as the sum of 2+ consecutive positive integers?
Answer by
jim_thompson5910(35256)
(
Show Source
):
You can
put this solution on YOUR website!
Here are all of the numbers I could think of
1+2=
3
2+3=
5
1+2+3=
6
3+4=
7
4+5=
9
1+2+3+4=
10
5+6=
11
3+4+5=
12
6+7=
13
2+3+4+5=
14
7+8=
15
8+9=
17
5+6+7=
18
9+10=
19
2+3+4+5+6=
20
10+11=
21
4+5+6+7=
22
11+12=
23
7+8+9=
24
12+13=
25
5+6+7+8=
26
13+14=
27
1+2+3+4+5+6+7=
28
14+15=
29
9+10+11=
30
15+16=
31
16+17=
33
7+8+9+10=
34
17+18=
35
11+12+13=
36
18+19=
37
8+9+10+11=
38
19+20=
39
6+7+8+9+10=
40
20+21=
41
13+14+15=
42
21+22=
43
2+3+4+5+6+7+8+9=
44
22+23=
45
10+11+12+13=
46
23+24=
47
15+16+17=
48
24+25=
49
11+12+13+14=
50
25+26=
51
3+4+5+6+7+8+9+10=
52
26+27=
53
17+18+19=
54
27+28=
55
5+6+7+8+9+10+11=
56
28+29=
57
13+14+15+16=
58
29+30=
59
19+20+21=
60
30+31=
61
14+15+16+17=
62
31+32=
63
32+33=
65
21+22+23=
66
33+34=
67
5+6+7+8+9+10+11+12=
68
34+35=
69
16+17+18+19=
70
35+36=
71
23+24+25=
72
36+37=
73
17+18+19+20=
74
37+38=
75
6+7+8+9+10+11+12+13=
76
38+39=
77
25+26+27=
78
39+40=
79
14+15+16+17+18=
80
40+41=
81
19+20+21+22=
82
41+42=
83
27+28+29=
84
42+43=
85
20+21+22+23=
86
43+44=
87
3+4+5+6+7+8+9+10+11+12+13=
88
44+45=
89
29+30+31=
90
45+46=
91
8+9+10+11+12+13+14+15=
92
46+47=
93
22+23+24+25=
94
47+48=
95
31+32+33=
96
48+49=
97
23+24+25+26=
98
49+50=
99
18+19+20+21+22=
100
Simply counting, I get 93 different numbers. So there are 93 different numbers that can be written as the sum of 2 or more consecutive positive integers (assuming I'm not forgetting anything).