| 
 
 
| Question 2240:  Ok this is my last problem. That you so much!
 Solve for X,Y,and Z in the following  systems of three equations:
 A)  X+2Y+Z =6
 X+Y=4
 3X+Y+Z=8
 
 B) 10X+Y+Z=12
 8X+2Y+Z=11
 20X-10Y-2Z=8
 
 
 C) 22X+5Y+7Z=12
 10X+3Y+2Z=5
 9X+2Y+12Z=14
 Answer by DeepaEvangeline(15)
      (Show Source): 
You can put this solution on YOUR website! a) X+2Y+Z=6 - (1)
 X+Y=4    - (2)
 3X+Y+Z=8 - (3)
 Eqn(3) - Eqn(1) gives
 2X-Y=2   - (4)
 Adding Eqn(2) & (4) gives
 3X=6 -> X = 2
 Substituting the value of X in eqn(2) gives
 X+Y=4
 2+Y=4 -> Y = 2
 Sub the value of X=2 and Y=2 in eqn (1) gives
 2+2.2+Z=6
 2+4+Z=6 -> Z = 0
 X = 2, Y = 2, Z = 0
 
 b)
 10X+Y+Z=12  - (1)
 8X+2Y+Z=11  - (2)
 20X-10Y-2Z=8 - (3)
 Subtracting eqn(2) from eqn(1) gives
 2X-Y=1  - (4)
 Eqn(2) x 2 gives
 16X+4Y+2Z=22  - (5)
 Eqn(3) + Eqn(5) gives
 36X-6Y=30  - (6)
 Eqn(4) x 6 gives
 12X-6Y=6  - (7)
 Eqn(6) - Eqn(7) gives
 24X=24 => X = 1
 Substituting X = 1 in eqn(4) gives
 2.1-Y=1 => Y = 1
 Sub the value of X = 1 and Y = 1 in eqn(1) gives
 10.1 + 1 + Z = 12
 11 + Z = 12 => Z = 1
 X = 1, Y = 1, Z = 1
 
 c)
 22X+5Y+7Z=12  - (1)
 10X+3Y+2Z=5   - (2)
 9X+2Y+12Z=14  - (3)
 Eqn(1) x 3 gives
 66X+15Y+21Z=36  - (4)
 Eqn(2) x 5 gives
 50X+15Y+10Z=25  - (5)
 Eqn(4) - eqn(5) gives
 16X+11Z=11  - (6)
 Eqn(2) x 2 gives
 20X+6Y+4Z=10  - (7)
 Eqn(3) x 3 gives
 27X+6Y+36Z=42  - (8)
 Eqn(8) - eqn(7) gives
 7X+32Z=32  - (9)
 Solving eqn(6) & (9),
 Eqn(6) x 7 gives
 112X+77Z=77  - (10)
 Eqn(9) x 16 gives
 112X+512Z=512  - (11)
 Eqn(11) - eqn(10) gives
 435Z=435 => Z = 1
 Substituting Z = 1 in eqn(9) gives
 7X+32=32 => X = 0
 Sub X = 0 and Z = 1 in eqn(2) gives
 10.0 + 3Y + 2.1 = 5
 3Y = 3 => Y = 1
 X = 0, Y = 1, Z = 1
 | 
  
 | 
 |