Question 22330:  Let v1=(1,6,4), v2=(2,4,-1), v3=(-1,2,5) and w1=(1,-2,-5), w2=(0,8,9).  Prove that span(v1,v2,v3)=span(w1,w2). thank you 
 Answer by khwang(438)      (Show Source): 
You can  put this solution on YOUR website!  v1=(1,6,4), v2=(2,4,-1), v3=(-1,2,5) and w1=(1,-2,-5), w2=(0,8,9). Prove that span(v1,v2,v3)=span(w1,w2). 
 
 Try to solve  
 aw1 + bw2 = v1,
 
 cw1 + dw2 = v2, 
and 
  ew1 + fw2 = v3.
 
 i.e. a(1,-2,-5)+b(0,8,9)=( 1,6,4) ...(1) 
 c(1,-2,-5)+d(0,8,9)=(2,4,-1)...(2) 
 e(1,-2,-5)+ f(0,8,9)=(-1,2,5)...(3)
 
 (1) becomes:  
 a+0=1, -2a+8b = 6, -5a+9b = 4. 
So,a=-1, b=1.
 
  Solving (b),(c) left for you to see if they have feasible 
 solutions. so, then v1,v2,v3 are in the span {w1,w2}. 
  
 Next. since w1, w2 are indep, dim spn(w1,w2} =2. 
 Also,  dim span(v1,v2,v3) >=2.  
 Hence,  span(v1,v2,v3)=span(w1,w2) 
 
 Kenny 
  | 
 
  
 
 |   
 
 |