Question 217322:  Find all the angles between 0° to 360° inclusive which satisfy the equation 
i) 2cot^2x + 5 = 7cosecx ii) 2cos^2x + 3sinx = 3 
 Answer by chibisan(131)      (Show Source): 
You can  put this solution on YOUR website! i) 
cot^2x = cosec^2x -1
 
2cot^2+5=7cosecx 
2(cosec^2x-1)+5 = 7cosecx 
2cosec^2x -2 + 5 = 7cosecx 
2cosec^2x -7cosecx +3 = 0 
(2cosecx-1)(cosecx - 3)= 0
 
cosecx = 1/2 
1/sinx = 1/2 
sinx = 2 
(no solution)
 
cosecx=3 
1/sinx = 3 
sinx =1/3 
x = 19.5° , 180 - 19.5° 
x = 19.5 , 160.5° (ans)
 
 
 
ii) 
2cos^2x + 3sinx = 3 
2(1-sin^2x) + 3sinx - 3=0 
-2sin^2x + 3sinx + 1= 0 
0= 2sin^2x - 3sinx + 1 
0= (2sinx- 1)(sinx - 1)
 
sinx = 1/2  
x = 30° , 180 - 30° 
x = 30° , 150°
 
sinx =1 
x= 90°, 180°-90° 
x = 90°
 
x= 30° , 90° , 150° (ans) 
  | 
 
  
 
 |   
 
 |