SOLUTION: The situation is a restaurant menu that has 10 appetizers, 15 main courses, and 7 desserts. The menu must be cut down to only 3 appetizers, 5 main courses, and 2 desserts. In how

Algebra ->  Probability-and-statistics -> SOLUTION: The situation is a restaurant menu that has 10 appetizers, 15 main courses, and 7 desserts. The menu must be cut down to only 3 appetizers, 5 main courses, and 2 desserts. In how      Log On


   



Question 215441: The situation is a restaurant menu that has 10 appetizers, 15 main courses, and 7 desserts. The menu must be cut down to only 3 appetizers, 5 main courses, and 2 desserts. In how many ways could this be accomplished assuming that the order they are listed on the menu is irrelevant?
here's what i've got:
10nCr3=120
15nCr5=3,003
7nCr2=21
what would be my next step? Thanks in advance.

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
The situation is a restaurant menu that has 10 appetizers, 15 main courses, and 7 desserts. The menu must be cut down to only 3 appetizers, 5 main courses, and 2 desserts. In how many ways could this be accomplished assuming that the order they are listed on the menu is irrelevant?
here's what i've got:
10nCr3=120
15nCr5=3,003
7nCr2=21
what would be my next step?
-------------------------------
I think you have accomplished what you were asked to do.
If the question also asks how many meals could be formed
with the 3 appetizers, 5 main courses, and 2 desserts, you
would multiply 120, 3003, and 21 to get 7,567,560 meals.
Or, if they want the number of meals that could be described
with the 3 apps you select, the 5 main courses you select,
and the 2 desserts you select, you should multiply 3*5*2 = 30.
-------------------------------
Cheers,
Stan H.