SOLUTION: Prove: If a*c = b*c and c ? 0, then a = b 1| a*c = b*c 2| a*c*(1/c) = b*c*(1/c) 3| a*[c*(1/c)] = b*[c*(1/c)] 4| a*1 = b*1 5| a = b Th

Algebra ->  Geometry-proofs -> SOLUTION: Prove: If a*c = b*c and c ? 0, then a = b 1| a*c = b*c 2| a*c*(1/c) = b*c*(1/c) 3| a*[c*(1/c)] = b*[c*(1/c)] 4| a*1 = b*1 5| a = b Th      Log On


   



Question 204861: Prove: If a*c = b*c and c ? 0, then a = b
1| a*c = b*c
2| a*c*(1/c) = b*c*(1/c)
3| a*[c*(1/c)] = b*[c*(1/c)]
4| a*1 = b*1
5| a = b
Then the question is
Choose the reason for line 1 of the proof.
Identity Property for Multiplication
Associative Property for Multiplication
Property of Reciprocals
Multiplication Property of Equality
Given




Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
The reason for line one is simply "given" (no pun intended). Whenever you start the problem by stating it, you simply say that it's given. It may sound silly, but when others read your work (without the question in front of them), they know what you're talking about.