| 
 
 
| Question 200746:  find the relative maximum and relative minimum values of the function below.
 f(x)=x^3+9x^2+15x-7
 relative maximum:  -5,  _____
 relative minimum:  -1, ______
 can not figure out the _____ part
 can someone help please
 thanks
 Answer by RAY100(1637)
      (Show Source): 
You can put this solution on YOUR website! f(x) =y= x^3 +9x^2 +15x -7 .
 differentiate
 y' = 3 x^2 +18x +15
 .
 factor
 (3x+3)(x+5)
 x=-1,,,x=-5
 .
 Substitute  into  first  eqn
 ,
 y(-1) = (-1)^3 +9(-1)^2 +15(-1) -7
 y(-1) = -1 +9 -15 - 7
 y(-1) = - 14
 .
 y(-5) = (-5)^3 +9 (-5)^2 +15 (-5) -7
 y(-5) = -125 +225 -75 -7
 y(-5) =  18
 .
 
 | 
  
 | 
 |