Question 200616: Find the exact value for f(x)=3(x+4)^2-30. vertex= ,axis of symmetry= ,y-intercepts= ,x-intercepts= .
Answer by RAY100(1637) (Show Source):
You can put this solution on YOUR website! f(x) = 3(x+4)^2 -30
y +30 = 3(x+4)^2
.
std form,,,(y-k) = A ( x-h)^2
.
-k=30,,,,k=-30,,,,,,,,,,-h = 4,,,h=-4,,,,Vertex ( h,k) = ( -4, -30)
.
Axis of symmetry is ,,,,,,,, x=-4
.
A is positive therefore open up (parabola)
.
y intercept,,,,let x=0,,,,,y=3(0+4)^2 -30,,,,y= 48-30,,,,y=18
.
x intercept,,,let y=0,,,,,0= 3(x+4)^2 -30 = 3 { (x+4)^2 -10}= x^2 +8x +16 -10 = x^2 +8x +6
.
Use quadratic equation to solve,,,( note above 3 can be eliminated, due to 0 )
.
a= 1,,,,b= 8,,,,,c=6
.
x=[ -(8) +/- sqrt { (8)^2 - 4 (1)(6) } ] / 2(1)
.
x =[ -8 +/- sqrt { 64 -24 } ] / 2
.
x = [ -8 +/- sqrt (40) ] /2
.
x= [ -8 +/- 6.32 ] /2
.
x = -7.16,,,x= - .838,,,,,,,also solution to equation
.
|
|
|