SOLUTION: Find three consecutive positive even integers such that the product of the first and second is two less than five times the third.(Only an algebraic solution will be accepted.): Fi
Algebra ->
Problems-with-consecutive-odd-even-integers
-> SOLUTION: Find three consecutive positive even integers such that the product of the first and second is two less than five times the third.(Only an algebraic solution will be accepted.): Fi
Log On
Question 199148: Find three consecutive positive even integers such that the product of the first and second is two less than five times the third.(Only an algebraic solution will be accepted.): Find three consecutive positive even integers such that the product of the first and second is two less than five times the third.(Only an algebraic solution will be accepted.)
You can put this solution on YOUR website! Let x, x+2 & x+4 be the 3 even integers.
x(x+2)=5(x+4)-2
x^2+2x=5x+20-2
x^2+2x-5x-18=0
x^2-3x-18=0
(x-6)(x+3)=0
x-6=0
x=6 ans. for the first even integer.
6+2=8 for the second even integer.
6+4=10 for the third even integer.
Proof:
6*8=5*10-2
48=50-2
48=48