SOLUTION: log (subscript 2) (x^2+8) = log (subscript 2)x +log (subscript 2)6

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: log (subscript 2) (x^2+8) = log (subscript 2)x +log (subscript 2)6      Log On


   



Question 196646: log (subscript 2) (x^2+8) = log (subscript 2)x +log (subscript 2)6
Answer by chiefman(11) About Me  (Show Source):
You can put this solution on YOUR website!
for RHS factoring out log(base2) we have
log(base2)[6x] since loga+logb=log(ab)
equating LHS and RHS we have
log(base2)[x^2+8]=log(base2)[6x]
cancelling log(base2)since it is commom on both sides
x^2+8=6x
x^2-6x+8=0 a quadratic equation
solving for x we get
x=4or2