Question 194509: I do not get how to prove that left side is equal to right side:
tan2@ - sin2@ = sin2@*tan2@
Found 2 solutions by RAY100, Edwin McCravy: Answer by RAY100(1637) (Show Source):
You can put this solution on YOUR website! tan^2a -sin^2a = sin^2a * tan^2a,,,,let a = theta
,
but tan = sin / cos
,
sin^2 a/cos^2a -sin^2a = sin^2a *tan^2a
,,
remember cos^2 = sin^2 =1,,, cos^2a = 1=sin^2a
,
sin^2a / ( 1-sin^2a) - sin^2a = sin^2a * tan^2a
,
using lcd = (1-sin^2a)
,
( sin^2a -sin^2a (1-sin^2a) )/ (1-sin^2a) = sin^2a *tan^2a
,
( sin^2a -sin^2a +sin4a ) (1-sin^2a) = sin^2a * tan^2a
,
but cos^2a = 1 - sin^2a
,
sin^4a / cos^2a = sin^2a * tan^2a
,
with tan = sin / cos
,
sin^2a * tan^2a = sin^2a * tan^2a
Answer by Edwin McCravy(20066) (Show Source):
You can put this solution on YOUR website! Edwin's solution:
tan2@ - sin2@ = sin2@*tan2@
sin2@ sin2@
----- - -----
cos2@ 1
sin2@ sin2@*cos2@
----- - -----------
cos2@ 1*cos2@
sin2@ - sin2@*cos2@
-------------------
cos2@
sin2@(1 - cos2@)
------------------
cos2@
sin2@(sin2@)
---------------
cos2@
/sin2@\
| ------| (sin2@)
\cos2@/
tan2@*sin2@
sin2@*tan2@
Edwin
|
|
|