SOLUTION: Segment JK=2x + 5
Segment KL=5x + 3
Segment JL=x^2
Find x.
So far, we have x^2=2x+5+5x+3
x^2=7x+8
We don't know how to solve for x by showing our work. We ca
Algebra ->
Angles
-> SOLUTION: Segment JK=2x + 5
Segment KL=5x + 3
Segment JL=x^2
Find x.
So far, we have x^2=2x+5+5x+3
x^2=7x+8
We don't know how to solve for x by showing our work. We ca
Log On
Question 181440: Segment JK=2x + 5
Segment KL=5x + 3
Segment JL=x^2
Find x.
So far, we have x^2=2x+5+5x+3
x^2=7x+8
We don't know how to solve for x by showing our work. We can figure out that the answer is x=8, but can't work it out.
Thanks for any assistance! Found 2 solutions by scott8148, stanbon:Answer by scott8148(6628) (Show Source):
You can put this solution on YOUR website! Segment JK=2x + 5
Segment KL=5x + 3
Segment JL=x^2
Find x.
So far, we have x^2=2x+5+5x+3
x^2=7x+8
---
x^2 - 7x - 8 = 0
Factor to get:
(x-8)(x+1) = 0
x = 8 or x = -1
----------------------8:
For x = 8
JK = 2x+5 = 2*8 + 5 = 21
KL = 5x + 3 = 5*8+3 = 43
JL = x^2 = 8^2 = 64
-------------------------
For x = -1
JK = 2x+5 = -2+5 = 3
KL = 5x+5 = 5*-1+5 = 0
JL = x^2 = (-1)^2 = 1
Note that 3+0 is not equal to 1
So x=-1 is not a true solution.
--------------------------
Cheers,
Stan H.