| 
 
 
| Question 177064:  Solve for x on the interval given:
 a)	2sin^2x-5cosx+1=0 [0, pie]
 b)	sinx/2=0 [-pie, pie]
 c)	cos2x=cos^2x [0, 2pie]
 
 Answer by Alan3354(69443)
      (Show Source): 
You can put this solution on YOUR website! Solve for x on the interval given: a) 2sin^2x-5cosx+1=0 [0, pi]
 2(1-cos^2) - 5cos + 1 = 0
 2-2cos^2 - 5cos + 1 = 0
 2cos^2 + 5cos - 3 = 0
 Now it's a quadratic in cos(x)
 cos(x) = -3, +1/2
 Ignore the -3 (it's a complex number)
 cos(x) = 1/x
 x = 60º, 300º = pi/3  (not pie, pi)
 -----------------
 b) sinx/2=0 [-pi, pi]
 Assuming you mean sin(x/2) and not (sin(x))/2:
 x/2 = 0, pi, -pi
 x = 0
 ----------------
 c) cos2x=cos^2x [0, 2pi]
 cos^2 - cos = 0
 cos(cos - 1) = 0
 cos = 0, cos = 1
 For cos(x) = 0:
 x = pi/2, 3pi/2
 --------------
 For cos(x) = 1:
 x = 0, 2pi
 | 
  
 | 
 |