SOLUTION: 1.find the domain of the function f(x) = ln (8x-24) 2. simplify log (1/10) 3. write as a single logarithm and simplify (no decimal approximations) 2 log 6 + log x - log

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: 1.find the domain of the function f(x) = ln (8x-24) 2. simplify log (1/10) 3. write as a single logarithm and simplify (no decimal approximations) 2 log 6 + log x - log       Log On


   



Question 170044: 1.find the domain of the function f(x) = ln (8x-24)
2. simplify log (1/10)
3. write as a single logarithm and simplify (no decimal approximations)
2 log 6 + log x - log 2
4. expand and simplify (no approximations: ln(ex)

Answer by ankor@dixie-net.com(22740) About Me  (Show Source):
You can put this solution on YOUR website!
1.find the domain of the function f(x) = ln (8x-24)
:
We can't have a negative value, (or 0) therefore: Domain: |x| x > 3
:
:
2. simplify log (1/10)
:
We can use the reciprocal of (1/10):
log%2810%5E-1%29
-1*log(10)
:
we know the log of 10 = 1
-1*1=-1
:
:
3. write as a single logarithm and simplify (no decimal approximations)
:
2 log 6 + log x - log 2
log%286%5E2%29+%2B+log%28x%29+-+log%282%29
log%2836%29+%2B+log%28x%29+-+log%282%29
log%28%2836x%29%2F2%29
log(18x)
:
:
4. expand and simplify (no approximations: ln(ex)
:
ln(e) + ln(x)
:
We know the ln of e = 1, therefore:
ln(x) + 1