SOLUTION: Find the greatest possible pair of integers such that one integer is 4 less than twice the other and their sum is at most 50.

Algebra ->  Inequalities -> SOLUTION: Find the greatest possible pair of integers such that one integer is 4 less than twice the other and their sum is at most 50.      Log On


   



Question 167519This question is from textbook prentice hall algebra 1
: Find the greatest possible pair of integers such that one integer is 4 less than twice the other and their sum is at most 50. This question is from textbook prentice hall algebra 1

Found 3 solutions by checkley77, stanbon, Mathtut:
Answer by checkley77(12844) About Me  (Show Source):
You can put this solution on YOUR website!
X=2Y-4
X+Y<=50
(2Y-4)+Y<=50
3Y-4<=50
3Y<=50+4
3Y<=54
Y<=54/3
Y<=18
X=2*18-4
X=36-4
X=32
PROOF:
LET Y=17.9
32+17.9<=50
49.9<=50

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Find the greatest possible pair of integers such that one integer is 4 less than twice the other and their sum is at most 50.
---------------------------------
Let the integers be "x" and "y".
---------------------------------
EQUATIONS:
x = 2y -4
x + y <= 50
-------------------------
Substitute to get:
2y-4+y <=50
3y <=54
y <= 18
---------------
x = 2*18-4 = 32
--------------------
Cheers,
Stan H.

Answer by Mathtut(3670) About Me  (Show Source):
You can put this solution on YOUR website!
will call them intergers a and b
a=2b-4 eq 1
a%2Bb%3C=50eq 2
take a's value from eq 1 and plug it into the 2nd equation.
{(2b-4)+b<+50}}}
3b%3C=54---->highlight%28b%3C=18%29
a%3C=50-b%2818%29=32---->highlight%28a%3C=32%29