You can put this solution on YOUR website! 2log(x+3) - log(x+1) = log(2x+3)
2log(x+3) - log(x+1) - log(2x+3)=0
using the formula log xy = log x + log y
and log x/y = log x - log y and log x^n = n*log x , we get
log (x+3)^2/[(x+1)*(2x+3)] =0 = log (1)
hence (x+3)^2/[(x+1)*(2x+3)] =1
(x+3)^2 =(x+1)*(2x+3)
x^2+6x+9 = 2x^2+5x+3
2x^2+5x+3 - (x^2+6x+9) = 0
2x^2+5x+3 -x^2-6x-9 = 0
x^2 -x -6 = 0.......find 2 factors of -6 whose sum is -1....namely -3 and 2
x^2 +2x - 3x -6 = 0
x(x+2) - 3 (x+2) = 0
(x-3)(x+2) = 0.........x-3 = 0 ....Or x+2 =0
hence x=3 or -2