Now in order to solve this system by using substitution, we need to solve (or isolate) one variable. I'm going to solve for y.
So let's isolate y in the first equation
Start with the first equation
Subtract from both sides
Rearrange the equation
Divide both sides by
Break up the fraction
Reduce
---------------------
Since , we can now replace each in the second equation with to solve for
Plug in into the first equation. In other words, replace each with . Notice we've eliminated the variables. So we now have a simple equation with one unknown.
Distribute to
Multiply
Multiply both sides by the LCM of 2. This will eliminate the fractions (note: if you need help with finding the LCM, check out this solver)
Distribute and multiply the LCM to each side
Combine like terms on the left side
Add 64 to both sides
Combine like terms on the right side
Simplify
Since this equation is never true for any x value, this means there are no solutions.
2)
Start with the given system of equations:
Let's use elimination to solve the system
Multiply the both sides of the second equation by 5.
Distribute and multiply.
So we have the new system of equations:
Now add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:
Group like terms.
Combine like terms. Notice how the y terms cancel out.