| 
 
 
| Question 152209:  solve the system using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination:
 w+x+y+z=5
 w+2x-y-2z=-1
 w-3x-3y-z=-1
 2w-x+2y-z=-2
 Found 2 solutions by  nabla, richwmiller:
 Answer by nabla(475)
      (Show Source): 
You can put this solution on YOUR website! 1 1   1  1  5 1 2  -1 -2 -1
 1 -3 -3 -1 -1
 2 -1  2 -1 -2
 -R1+R2, -R1+R3
 1 1   1  1  5
 0 1  -2 -3 -6
 0 -4 -4 -2 -6
 2 -1  2 -1 -2
 -2R1+R4
 1 1   1  1  5
 0 1  -2 -3 -6
 0 -4 -4 -2 -6
 0 -3  0 -3 -12
 -1/3R4, -1/2R3
 1  1  1  1  5
 0  1 -2 -3 -6
 0  2  2  1  3
 0  1  0  1  4
 -R2+R1, -R2+R4
 1  0  3  4  11
 0  1 -2 -3 -6
 0  2  2  1  3
 0  0  2  4  10
 -2R2+R3
 1  0  3  4  11
 0  1 -2 -3 -6
 0  0  6  7  15
 0  0  2  4  10
 1/2R4 <-> R3
 1  0  3  4  11
 0  1 -2 -3 -6
 0  0  1  2  5
 0  0  6  7  15
 -3R3+R1,2R3+R2, -6R3+R4
 1  0  0 -2  -4
 0  1  0  1   4
 0  0  1  2   5
 0  0  0 -5  -3
 -1/5R5
 1  0  0 -2  -4
 0  1  0  1   4
 0  0  1  2   5
 0  0  0  1  3/5
 -2R4+R3,-R4+R2, 2R4+R1
 1  0  0  0 -14/5
 0  1  0  0  17/5
 0  0  1  0  19/5
 0  0  0  1  3/5
 
 This gives solution set {-14/5, 17/5, 19/5, 3/5}.
Answer by richwmiller(17219)
      (Show Source): 
You can put this solution on YOUR website! w+x+y+z=5 w+2x-y-2z=-1
 w-3x-3y-z=-1
 2w-x+2y-z=-2
 1,1,1,1,5
 1,2,-1,-2,-1
 1,-3,-3,-1,-1
 2,-1,2,-1,-2
 add  down (-1/1) *row 1 to row 2
 1,1,1,1,5
 0,1,-2,-3,-6
 1,-3,-3,-1,-1
 2,-1,2,-1,-2
 
 add  down (-1/1) *row 1 to row 3
 1,1,1,1,5
 0,1,-2,-3,-6
 0,-4,-4,-2,-6
 2,-1,2,-1,-2
 
 
 add  down (-2/1) *row 1 to row 4
 1,1,1,1,5
 0,1,-2,-3,-6
 0,-4,-4,-2,-6
 0,-3,0,-3,-12
 add  down (4/1) *row 2 to row 3
 1,1,1,1,5
 0,1,-2,-3,-6
 0,0,-12,-14,-30
 0,-3,0,-3,-12
 
 add  down (3/1) *row 2 to row 4
 1,1,1,1,5
 0,1,-2,-3,-6
 0,0,-12,-14,-30
 0,0,-6,-12,-30
 divide row 3 by -12/1
 1,1,1,1,5
 0,1,-2,-3,-6
 0,0,1,-14/-12,-30/-12
 0,0,-6,-12,-30
 
 add  down (6/1) *row 3 to row 4
 1,1,1,1,5
 0,1,-2,-3,-6
 0,0,1,7/6,5/2
 0,0,0,-5,-15
 divide row 4 by -5/1
 1,1,1,1,5
 0,1,-2,-3,-6
 0,0,1,7/6,5/2
 0,0,0,1,3
 This is where you would start back substitution.
 We now have z=3
 We continue with the matrix solution
 
 add  up  (-7/6) *row 4 to row 3
 1,1,1,1,5
 0,1,-2,-3,-6
 0,0,1,0,-1
 0,0,0,1,3
 now we have y= -1
 add  up  (3/1) *row 4 to row 2
 1,1,1,1,5
 0,1,-2,0,3
 0,0,1,0,-1
 0,0,0,1,3
 
 add  up  (-1/1) *row 4 to row 1
 row 1 col 2
 1,1,1,0,2
 0,1,-2,0,3
 0,0,1,0,-1
 0,0,0,1,3
 
 add  up  (2/1) *row 3 to row 2
 1,1,1,0,2
 0,1,0,0,1
 0,0,1,0,-1
 0,0,0,1,3
 now we have  z=3 y=-1 x=1
 add  up  (-1/1) *row 3 to row 1
 1,1,0,0,3
 0,1,0,0,1
 0,0,1,0,-1
 0,0,0,1,3
 add  up  (-1/1) *row 2 to row 1
 1,0,0,0,2
 0,1,0,0,1
 0,0,1,0,-1
 0,0,0,1,3
 now we have all four solutions
 w=2 x=1 y=-1 z=3
 (2,1,-1,3)
 w+x+y+z=5
 check
 2+1-1-3=5
 ok
 w+2x-y-2z=-1
 2+2-(-1)-6=-1
 5-6=-1
 ok
 w-3x-3y-z=-1
 2-3-3(-1)-3=-1
 -1+3-3=-1
 ok
 2w-x+2y-z=-2
 2*2-1+2(-1)-3=-2
 4-1-2-3=-2
 3-2-3=-2
 ok
 (2,1,-1,3) works in all 4 equations
 | 
  
 | 
 |