SOLUTION: Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for g(x) if 1 - x is a factor of f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 + 3x -
Algebra ->
Equations
-> SOLUTION: Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for g(x) if 1 - x is a factor of f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 + 3x -
Log On
Question 147547: Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for g(x) if 1 - x is a factor of f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 + 3x - 1
c. g(x) = -x^2 + 2x - 1
d. g(x) = x^2 - 2x + 1 Answer by nabla(475) (Show Source):
You can put this solution on YOUR website! We shall want
g(x)=(-x^3 + 3x^2 - 3x + 1)/(-x+1)
You can solve this a few different ways. I will use long division.
......x^2-2x+1
_______________________
-x+1)-x^3 + 3x^2 - 3x + 1
...-(-x^3+x^2)
________________
........2x^2-3x
......-(2x^2-2x)
__________________
..........-x+1
........-(-x+1)
_________________
.............0
So g(x)=x^2-2x+1