| 
 
 
| Question 127679:  Solve for x:
 a) (log base2 x)^2-(logbase2 x^2)=0
 b) log base2(logbasex 64)=1
 c) log base5(5x+2)=1/2 logbase5 49+logbase5 16
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! Solve for x: a) (log base2 x)^2-(logbase2 x^2)=0
 (log base2 x)^2 - 2(logbase2 x) = 0
 Factor:
 (log base2 x)(log base2 x -2) = 0
 One of those factors must be zero:
 If log base2 x = 0, then 2^0=x and x = 1
 -------------------
 If log base2 x-2 = 0, then log base2 x = 2 and x = 2^2 = 4
 ==================================================================
 b) log base2(log basex 64)=1
 log basex 64 = 2^1
 x^2 = 64
 x = 8
 ------------------
 c) log base5(5x+2)=1/2 logbase5 49+logbase5 16
 log base5(5x+2) =  logbase5 7 + logbase5 16
 log base5(5x+2) =  logbase5 (7*16)
 5x+2 = 112
 5x = 110
 x = 22
 ================
 Cheers,
 stan H.
 
 
 | 
  
 | 
 |