| 
 
 
| Question 127212:  I need to express the following in the simplest form:
 {a^2+6a-7}                  {2a^2+a-15}           {a^2+5a-14}
 --------          *          ---------       /     ---------
 {6a^2-7a-20}                {a^2+2a-3}            {3a^2-2a-8}
 So far I have:
 {(a+6)(a-1)}                                       {3a+4}
 ----------         *    --------        /          ---------
 {(a+3)(a-1)}                   {(a+7)}
 
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! I need to express the following in the simplest form: {a^2+6a-7}                  {2a^2+a-15}           {a^2+5a-14}
 --------          *          ---------       /     ---------
 {6a^2-7a-20}                {a^2+2a-3}            {3a^2-2a-8}
 =====================================================================
 Factor where you can; Cancel where you can:
 {(a+7)(a-1)}       *        {(2a-5)(a+3)}   /     {(a+7)(a-2)}
 ------------                ------------          ------------
 {(2a-5)(3a+4)}              {(a+3)(a-1)}          {(a-2)(3a+4)}
 =====================================================================
 Cancel (a-1),(2a-5),(a+3), (a-2)
 {(a+7)}       *        1    /     {(a+7)}
 ---------             ---         ------------
 {(3a+4)}               1          {(3a+4)}
 =============================
 Invert the denominator and multiply to get:
 Final Answer: 1
 ===================
 Cheers,
 Stan H.
 | 
  
 | 
 |