SOLUTION: Is 2(rad)112 = 8(rad)7 ?

Algebra ->  Radicals -> SOLUTION: Is 2(rad)112 = 8(rad)7 ?      Log On


   



Question 126431: Is 2(rad)112 = 8(rad)7 ?
Answer by bucky(2189) About Me  (Show Source):
You can put this solution on YOUR website!
Given:
.
2%2Asqrt%28112%29
.
To simplify this begin by factoring 112. First step, since 112 is even divide by 2 and you have
112 = 56*2. But the 56 is even, so you can also divide it by 2 and the 56*2 then becomes
28*2*2. And since the 28 is also even, divide it by 2 and the 28*2*2 becomes 14*2*2*2.
And again, the 14 is even so divide it by 2 and the final form is 7*2*2*2*2. The 7 is a prime
number so you cannot factor it down further.
.
Return to your original expression and substitute 7*2*2*2*2 for 112 and you have:
.
2%2Asqrt%287%2A2%2A2%2A2%2A2%29
.
You can split this up into the products:
.
2%2Asqrt%287%29%2Asqrt%282%2A2%29%2Asqrt%282%2A2%29
.
But sqrt%282%2A2%29+=+2
.
Substitute 2 for each of the terms sqrt%282%2A2%29 and you reduce the expression to:
.
2%2Asqrt%287%29%2A2%2A2
.
Multiply the three 2's together to get 2*2*2 = 8 and the problem reduces to:
.
8%2Asqrt%287%29
.
So congratulations ... your answer was correct. Good job! Keep up the good work.
.