SOLUTION: -3x^2+7x=-5 solve the quadratic equation by completing square

Algebra ->  Trigonometry-basics -> SOLUTION: -3x^2+7x=-5 solve the quadratic equation by completing square      Log On


   



Question 124685: -3x^2+7x=-5 solve the quadratic equation by completing square
Answer by MathLover1(20850) About Me  (Show Source):
You can put this solution on YOUR website!

-3x%5E2%2B7x=-5
-3x%5E2%2B7x+%2B+5+=+0
Solved by pluggable solver: COMPLETING THE SQUARE solver for quadratics
Read this lesson on completing the square by prince_abubu, if you do not know how to complete the square.
Let's convert -3x%5E2%2B7x%2B5=0 to standard form by dividing both sides by -3:
We have: 1x%5E2%2B-2.33333333333333x%2B-1.66666666666667=0. What we want to do now is to change this equation to a complete square %28x%2Bsomenumber%29%5E2+%2B+othernumber. How can we find out values of somenumber and othernumber that would make it work?
Look at %28x%2Bsomenumber%29%5E2: %28x%2Bsomenumber%29%5E2+=+x%5E2%2B2%2Asomenumber%2Ax+%2B+somenumber%5E2. Since the coefficient in our equation 1x%5E2%2Bhighlight_red%28+-2.33333333333333%29+%2A+x%2B-1.66666666666667=0 that goes in front of x is -2.33333333333333, we know that -2.33333333333333=2*somenumber, or somenumber+=+-2.33333333333333%2F2. So, we know that our equation can be rewritten as %28x%2B-2.33333333333333%2F2%29%5E2+%2B+othernumber, and we do not yet know the other number.
We are almost there. Finding the other number is simply a matter of not making too many mistakes. We need to find 'other number' such that %28x%2B-2.33333333333333%2F2%29%5E2+%2B+othernumber is equivalent to our original equation 1x%5E2%2B-2.33333333333333x%2Bhighlight_green%28+-1.66666666666667+%29=0.


The highlighted red part must be equal to -1.66666666666667 (highlighted green part).

-2.33333333333333%5E2%2F4+%2B+othernumber+=+-1.66666666666667, or othernumber+=+-1.66666666666667--2.33333333333333%5E2%2F4+=+-3.02777777777778.
So, the equation converts to %28x%2B-2.33333333333333%2F2%29%5E2+%2B+-3.02777777777778+=+0, or %28x%2B-2.33333333333333%2F2%29%5E2+=+3.02777777777778.

Our equation converted to a square %28x%2B-2.33333333333333%2F2%29%5E2, equated to a number (3.02777777777778).

Since the right part 3.02777777777778 is greater than zero, there are two solutions:


, or





system%28+x+=+2.90671775148509%2C+x+=+-0.573384418151758+%29
Answer: x=2.90671775148509, -0.573384418151758.