SOLUTION: The function f : \mathbb{R} \rightarrow \mathbb{R} satisfies
xf(x) + f(1 - x)/x = x^3 + 3x^2 + 14x - 13
for all real x. Find f(x).
Algebra ->
Functions
-> SOLUTION: The function f : \mathbb{R} \rightarrow \mathbb{R} satisfies
xf(x) + f(1 - x)/x = x^3 + 3x^2 + 14x - 13
for all real x. Find f(x).
Log On
Question 1209971: The function f : \mathbb{R} \rightarrow \mathbb{R} satisfies
xf(x) + f(1 - x)/x = x^3 + 3x^2 + 14x - 13
for all real x. Find f(x). Answer by CPhill(1959) (Show Source):