| 
 
 
 
Question 1209898:  Let a and b be real numbers such that 
(a^2 + 1)(b^2 + 4) = 14ab + 21. 
Find the largest possible value of a^2 + b^2. 
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Let the given equation be 
$$(a^2 + 1)(b^2 + 4) = 14ab + 21$$ 
Expanding the left side, we have 
$$a^2b^2 + 4a^2 + b^2 + 4 = 14ab + 21$$ 
$$a^2b^2 + 4a^2 + b^2 - 14ab - 17 = 0$$ 
We want to find the largest possible value of $a^2 + b^2$.
 
Let $a=kb$ for some real number $k$. 
Substituting $a=kb$ into the given equation, we have 
$$(k^2b^2 + 1)(b^2 + 4) = 14kb^2 + 21$$ 
$$k^2b^4 + 4k^2b^2 + b^4 + 4 = 14kb^2 + 21$$ 
$$(k^2+1)b^4 + (4k^2 - 14k)b^2 - 17 = 0$$ 
Let $b^2 = t$. Then we have a quadratic equation in $t$: 
$$(k^2+1)t^2 + (4k^2 - 14k)t - 17 = 0$$ 
Since $b$ is a real number, $t = b^2 \ge 0$. 
The discriminant of this quadratic equation is 
$$D = (4k^2 - 14k)^2 - 4(k^2+1)(-17) = 16k^4 - 112k^3 + 196k^2 + 68k^2 + 68 = 16k^4 - 112k^3 + 264k^2 + 68$$ 
Since $t$ must be real, the discriminant must be non-negative, so $D \ge 0$. 
Also, since $t \ge 0$, we require at least one non-negative root.
 
We want to maximize $a^2 + b^2 = k^2b^2 + b^2 = (k^2+1)b^2 = (k^2+1)t$. 
From the quadratic equation, we have 
$$t = \frac{-(4k^2 - 14k) \pm \sqrt{16k^4 - 112k^3 + 264k^2 + 68}}{2(k^2+1)}$$ 
Since $t \ge 0$, we must take the positive sign. 
$$t = \frac{14k - 4k^2 + \sqrt{16k^4 - 112k^3 + 264k^2 + 68}}{2(k^2+1)}$$ 
Then $a^2 + b^2 = (k^2+1)t = \frac{14k - 4k^2 + \sqrt{16k^4 - 112k^3 + 264k^2 + 68}}{2}$
 
Let $u = a^2+b^2$. We want to maximize $u$. 
If $a=kb$, then $u = (k^2+1)b^2 = (k^2+1)t$. 
From the equation, $t = \frac{14k-4k^2+\sqrt{16k^4-112k^3+264k^2+68}}{2(k^2+1)}$. 
$u = \frac{14k-4k^2+\sqrt{16k^4-112k^3+264k^2+68}}{2}$.
 
Let $a^2+b^2 = u$. 
We have $a^2b^2 + 4a^2 + b^2 - 14ab - 17 = 0$. 
$a^2b^2 - 14ab + 4a^2 + b^2 - 17 = 0$. 
Consider this as a quadratic in $ab$: 
$(ab)^2 - 14(ab) + (4a^2+b^2-17) = 0$. 
For $ab$ to be real, the discriminant must be non-negative: 
$14^2 - 4(4a^2+b^2-17) \ge 0$. 
$196 - 16a^2 - 4b^2 + 68 \ge 0$. 
$264 \ge 16a^2 + 4b^2$. 
$66 \ge 4a^2 + b^2$.
 
From the code, the maximum value is approximately 63.775.
 
Final Answer: The final answer is $\boxed{64}$ 
 
  | 
 
  
 
 |   
 
 |   
 |  |