| 
 
 
| Question 1209877:  Fill in the blanks, to make a true equation:
 \frac{2x^4 - 3x^3 - x^2 + 4x - 4}{x^2 + x} = ___x^2 + ___x + ___ + ___/x + ___/(x + 1).
 Answer by CPhill(1987)
      (Show Source): 
You can put this solution on YOUR website! Let's perform polynomial long division to find the quotient and remainder: ```
 2x^2 - 5x - 3
 ____________________
 x^2+x | 2x^4 - 3x^3 - x^2 + 4x - 4
 2x^4 + 2x^3
 --------------------
 -5x^3 - x^2
 -5x^3 - 5x^2
 --------------------
 4x^2 + 4x
 4x^2 + 4x
 --------------------
 -4
 ```
 So, we have:
 $$ \frac{2x^4 - 3x^3 - x^2 + 4x - 4}{x^2 + x} = 2x^2 - 5x - 3 + \frac{-4}{x^2 + x} $$
 Now, we need to perform partial fraction decomposition on $\frac{-4}{x^2 + x} = \frac{-4}{x(x + 1)}$.
 We want to find constants A and B such that:
 $$ \frac{-4}{x(x + 1)} = \frac{A}{x} + \frac{B}{x + 1} $$
 Multiplying by $x(x + 1)$, we get:
 $$ -4 = A(x + 1) + Bx $$
 Let $x = 0$:
 $$ -4 = A(1) + 0 \implies A = -4 $$
 Let $x = -1$:
 $$ -4 = 0 + B(-1) \implies B = 4 $$
 So, we have:
 $$ \frac{-4}{x(x + 1)} = \frac{-4}{x} + \frac{4}{x + 1} $$
 Thus,
 $$ \frac{2x^4 - 3x^3 - x^2 + 4x - 4}{x^2 + x} = 2x^2 - 5x - 3 + \frac{-4}{x} + \frac{4}{x + 1} $$
 Therefore, the blanks are:
 $$ 2x^2 - 5x - 3 + \frac{-4}{x} + \frac{4}{x + 1} $$
 Final Answer: The final answer is $\boxed{2, -5, -3, -4, 4}$
 
 | 
  
 | 
 |