| 
 
 
 
Question 1209855:  For each of the following functions, determine if the function is increasing, decreasing, even, odd, and/or invertible on its natural domain. Select all the properties that apply. 
f(x) = sqrt{10 - x} + \sqrt{x + 10} 
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Let's analyze the function f(x) = √(10 - x) + √(x + 10).
 
**1. Natural Domain:**
 
* **√(10 - x):** 10 - x ≥ 0 => x ≤ 10 
* **√(x + 10):** x + 10 ≥ 0 => x ≥ -10
 
Therefore, the domain is the intersection of these two conditions: -10 ≤ x ≤ 10, or [-10, 10].
 
**2. Even or Odd:**
 
* **Even:** f(-x) = f(x) 
* **Odd:** f(-x) = -f(x)
 
Let's test f(-x):
 
f(-x) = √(10 - (-x)) + √((-x) + 10) 
f(-x) = √(10 + x) + √(10 - x)
 
Comparing:
 
* f(-x) = √(10 + x) + √(10 - x) 
* f(x) = √(10 - x) + √(10 + x)
 
Therefore, f(-x) = f(x), and the function is **even**.
 
Since the function is even, it cannot be odd.
 
**3. Increasing or Decreasing:**
 
* To determine if the function is increasing or decreasing, we need to analyze its derivative, f'(x).
 
f(x) = (10 - x)^(1/2) + (x + 10)^(1/2)
 
Now, find the derivative:
 
f'(x) = (1/2)(10 - x)^(-1/2)(-1) + (1/2)(x + 10)^(-1/2)(1) 
f'(x) = -1 / (2√(10 - x)) + 1 / (2√(x + 10))
 
To find when f'(x) > 0 (increasing) and f'(x) < 0 (decreasing), we need to set f'(x) = 0:
 
-1 / (2√(10 - x)) + 1 / (2√(x + 10)) = 0 
1 / (2√(x + 10)) = 1 / (2√(10 - x)) 
√(x + 10) = √(10 - x) 
x + 10 = 10 - x 
2x = 0 
x = 0
 
Now, let's test intervals:
 
* **For -10 ≤ x < 0:** 
    * Let's test x = -9: 
    * f'(-9) = -1 / (2√(10 - (-9))) + 1 / (2√(-9 + 10)) 
    * f'(-9) = -1 / (2√19) + 1 / (2√1) 
    * f'(-9) ≈ -0.114 + 0.5 
    * f'(-9) > 0 (increasing)
 
* **For 0 < x ≤ 10:** 
    * Let's test x = 9: 
    * f'(9) = -1 / (2√(10 - 9)) + 1 / (2√(9 + 10)) 
    * f'(9) = -1 / (2√1) + 1 / (2√19) 
    * f'(9) ≈ -0.5 + 0.114 
    * f'(9) < 0 (decreasing)
 
Therefore, the function is increasing on [-10, 0] and decreasing on [0, 10].
 
**4. Invertibility:**
 
* Since the function is not strictly increasing or decreasing over its entire domain, it is **not invertible**.
 
**Conclusion:**
 
* **Domain:** [-10, 10] 
* **Even** 
* **Invertible:** No 
* **Increasing:** [-10, 0] 
* **Decreasing:** [0, 10] 
 
  | 
 
  
 
 |   
 
 |   
 |  |