| 
 
 
 
Question 1209814:  Let r be a real number such that |r| < 1.  Express 
\sum_{n = 0}^{\infty} n*r^n*(n + 1)*(n + 2) 
in terms of r. 
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Let $S = \sum_{n=0}^{\infty} n(n+1)(n+2)r^n$. 
Consider the geometric series $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$ for $|r| < 1$. 
Differentiating with respect to $r$, we have: 
$\sum_{n=1}^{\infty} nr^{n-1} = \frac{1}{(1-r)^2}$. 
Multiplying by $r$, we get: 
$\sum_{n=1}^{\infty} nr^n = \frac{r}{(1-r)^2}$. 
Differentiating again with respect to $r$: 
$\sum_{n=1}^{\infty} n^2 r^{n-1} = \frac{(1-r)^2 + 2r(1-r)}{(1-r)^4} = \frac{(1-r)(1-r+2r)}{(1-r)^4} = \frac{1+r}{(1-r)^3}$. 
Multiplying by $r$: 
$\sum_{n=1}^{\infty} n^2 r^n = \frac{r(1+r)}{(1-r)^3}$. 
Differentiating again with respect to $r$: 
$\sum_{n=1}^{\infty} n^3 r^{n-1} = \frac{(1-r)^3(1+2r) + 3r(1+r)(1-r)^2}{(1-r)^6} = \frac{(1-r)(1+2r) + 3r(1+r)}{(1-r)^4} = \frac{1+2r-r-2r^2+3r+3r^2}{(1-r)^4} = \frac{r^2+4r+1}{(1-r)^4}$. 
Multiplying by $r$: 
$\sum_{n=1}^{\infty} n^3 r^n = \frac{r(r^2+4r+1)}{(1-r)^4}$.
 
Now we want to find $\sum_{n=0}^{\infty} n(n+1)(n+2)r^n$. 
Note that $n(n+1)(n+2) = n(n^2+3n+2) = n^3 + 3n^2 + 2n$. 
Therefore, 
$S = \sum_{n=0}^{\infty} (n^3 + 3n^2 + 2n)r^n = \sum_{n=0}^{\infty} n^3 r^n + 3\sum_{n=0}^{\infty} n^2 r^n + 2\sum_{n=0}^{\infty} nr^n$. 
Using the results above, we have: 
$S = \frac{r(r^2+4r+1)}{(1-r)^4} + 3\frac{r(1+r)}{(1-r)^3} + 2\frac{r}{(1-r)^2}$. 
$S = \frac{r(r^2+4r+1) + 3r(1+r)(1-r) + 2r(1-r)^2}{(1-r)^4}$. 
$S = \frac{r(r^2+4r+1) + 3r(1-r^2) + 2r(1-2r+r^2)}{(1-r)^4}$. 
$S = \frac{r^3+4r^2+r + 3r-3r^3 + 2r-4r^2+2r^3}{(1-r)^4}$. 
$S = \frac{r^3+4r^2+r+3r-3r^3+2r-4r^2+2r^3}{(1-r)^4}$. 
$S = \frac{(1-3+2)r^3 + (4-4)r^2 + (1+3+2)r}{(1-r)^4}$. 
$S = \frac{6r}{(1-r)^4}$.
 
Final Answer: The final answer is $\boxed{\frac{6r}{(1-r)^4}}$ 
 
  | 
 
  
 
 |   
 
 |   
 |  |