Question 1209757:  If z is a complex number satisfying
 
z + \frac{1}{z} = \sqrt{2},
 
calculate
 
z^{10} + \frac{1}{z^{10}}. 
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Let's solve this problem step-by-step.
 
**1. Rewrite the Given Equation:**
 
We are given:
 
z + 1/z = √2
 
Multiply both sides by z:
 
z² + 1 = √2z
 
Rearrange to form a quadratic equation:
 
z² - √2z + 1 = 0
 
**2. Solve for z:**
 
Using the quadratic formula:
 
z = [√2 ± √((√2)² - 4(1)(1))] / 2
 
z = [√2 ± √(2 - 4)] / 2
 
z = [√2 ± √(-2)] / 2
 
z = [√2 ± i√2] / 2
 
z = (√2 / 2) ± i(√2 / 2)
 
z = (1/√2) ± i(1/√2)
 
**3. Express z in Polar Form:**
 
We can express z in polar form as z = r(cos θ + i sin θ), where r is the magnitude and θ is the argument.
 
* Magnitude (r): 
    r = √[(1/√2)² + (1/√2)²] = √(1/2 + 1/2) = √1 = 1
 
* Argument (θ): 
    Since cos θ = 1/√2 and sin θ = ±1/√2, we have: 
    * If z = (1/√2) + i(1/√2), then θ = π/4. 
    * If z = (1/√2) - i(1/√2), then θ = -π/4.
 
Thus, we have:
 
* z = cos(π/4) + i sin(π/4) or 
* z = cos(-π/4) + i sin(-π/4)
 
**4. Use De Moivre's Theorem:**
 
De Moivre's Theorem states that for any complex number z = r(cos θ + i sin θ) and integer n:
 
z^n = r^n (cos(nθ) + i sin(nθ))
 
In our case, r = 1, so:
 
z^n = cos(nθ) + i sin(nθ)
 
**5. Calculate z^10:**
 
* If θ = π/4: 
    z^10 = cos(10π/4) + i sin(10π/4) = cos(5π/2) + i sin(5π/2) = cos(π/2) + i sin(π/2) = 0 + i(1) = i 
* If θ = -π/4: 
    z^10 = cos(-10π/4) + i sin(-10π/4) = cos(-5π/2) + i sin(-5π/2) = cos(-π/2) + i sin(-π/2) = 0 + i(-1) = -i
 
**6. Calculate 1/z^10:**
 
* If z^10 = i, then 1/z^10 = 1/i = -i. 
* If z^10 = -i, then 1/z^10 = 1/(-i) = i.
 
**7. Calculate z^10 + 1/z^10:**
 
* If z^10 = i and 1/z^10 = -i, then z^10 + 1/z^10 = i + (-i) = 0. 
* If z^10 = -i and 1/z^10 = i, then z^10 + 1/z^10 = -i + i = 0.
 
**Final Answer:**
 
z^10 + 1/z^10 = 0 
 
  | 
 
  
 
 |   
 
 |