| 
 
 
| Question 1209731:  Let r, s, and t be solutions of the equation
  . Compute
 
   Found 3 solutions by  CPhill, ikleyn, Edwin McCravy:
 Answer by CPhill(1987)
      (Show Source): 
You can put this solution on YOUR website! Let the given cubic equation be $x^3 + 2x^2 - 5x + 15 = 0$. Let $r, s, t$ be the roots of the equation.
 By Vieta's formulas, we have:
 \begin{align*} \label{eq:1} r + s + t &= -2 \\ rs + st + tr &= -5 \\ rst &= -15\end{align*}
 We want to compute
 $$ S = \frac{1}{r - 2s - 2t} + \frac{1}{s - 2r - 2t} + \frac{1}{t - 2r - 2s} $$
 We can rewrite the denominators as follows:
 \begin{align*} r - 2s - 2t &= r - 2(s+t) = r - 2(-2-r) = r + 4 + 2r = 3r + 4 \\ s - 2r - 2t &= s - 2(r+t) = s - 2(-2-s) = s + 4 + 2s = 3s + 4 \\ t - 2r - 2s &= t - 2(r+s) = t - 2(-2-t) = t + 4 + 2t = 3t + 4\end{align*}
 Then,
 $$ S = \frac{1}{3r+4} + \frac{1}{3s+4} + \frac{1}{3t+4} $$
 Let $y = 3x+4$, so $x = \frac{y-4}{3}$. Substituting this into the cubic equation, we get
 $$ \left(\frac{y-4}{3}\right)^3 + 2\left(\frac{y-4}{3}\right)^2 - 5\left(\frac{y-4}{3}\right) + 15 = 0 $$
 $$ (y-4)^3 + 6(y-4)^2 - 45(y-4) + 405 = 0 $$
 $$ y^3 - 12y^2 + 48y - 64 + 6(y^2 - 8y + 16) - 45y + 180 + 405 = 0 $$
 $$ y^3 - 12y^2 + 48y - 64 + 6y^2 - 48y + 96 - 45y + 180 + 405 = 0 $$
 $$ y^3 - 6y^2 - 45y + 622 = 0 $$
 The roots of this equation are $3r+4$, $3s+4$, and $3t+4$. Let $u = 3r+4$, $v = 3s+4$, $w = 3t+4$.
 Then
 $$ \frac{1}{u} + \frac{1}{v} + \frac{1}{w} = \frac{uv+vw+uw}{uvw} $$
 From the equation $y^3 - 6y^2 - 45y + 622 = 0$, we have
 \begin{align*} u+v+w &= 6 \\ uv+vw+uw &= -45 \\ uvw &= -622 \end{align*}
 Therefore,
 $$ S = \frac{1}{3r+4} + \frac{1}{3s+4} + \frac{1}{3t+4} = \frac{uv+vw+uw}{uvw} = \frac{-45}{-622} = \frac{45}{622} $$
 Final Answer: The final answer is $\boxed{45/622}$
 
Answer by ikleyn(52879)
      (Show Source): Answer by Edwin McCravy(20064)
      (Show Source): 
 | 
  
 | 
 |